e-book Fundamentals of Natural Gas Processing, Second Edition

Free download. Book file PDF easily for everyone and every device. You can download and read online Fundamentals of Natural Gas Processing, Second Edition file PDF Book only if you are registered here. And also you can download or read online all Book PDF file that related with Fundamentals of Natural Gas Processing, Second Edition book. Happy reading Fundamentals of Natural Gas Processing, Second Edition Bookeveryone. Download file Free Book PDF Fundamentals of Natural Gas Processing, Second Edition at Complete PDF Library. This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats. Here is The CompletePDF Book Library. It's free to register here to get Book file PDF Fundamentals of Natural Gas Processing, Second Edition Pocket Guide.

Processing principles -- Pumps -- Heat transfer -- Separation processes -- Phase separation equipment -- Overview of the natural gas industry -- Overview of gas plant processing -- Field operations and inlet receiving -- Compression -- Gas treating -- Gas dehydration -- Hydrocarbon recovery -- Nitrogen rejection -- Trace component recovery or removal -- Liquids processing -- Acid gas processing and disposal -- Transportation and storage -- Liquefied natural gas -- Capital costs of gas processing facilities -- Natural gas processing plants.

The initial chapters give a brief overview of basic concepts applicable throughout the chemical processing industry. The second part addresses natural gas processing, following the gas stream from purchase at the wellhead to its entrance at the market place.

Related titles

Wherever possible, advantages, limitations, and ranges of applicability of various processes are discussed so that their integration into the overall gas plant can be fully appreciated"--Provided by publisher. Powered by Koha. Log in to your account. Advanced search Tag cloud. Login: Password:. Kidnay, William R. Figure 2. The diagram explain the different steps from the well to the applications. As shown in the figure the source of the gas could be from the gas wells or from oil — gas wells.

For crude oil, it is not necessary to apply some treatment, i. But for the natural gas the situation is differs, while the natural gas need more treatment and processing steps to be able for export dry gas. As well as, Fig. Values shown are in Tcf. Adapted from Energy Information Administration, Why Natural Gas Processing The natural gas used by consumers is composed almost entirely of methane. However, natural gas found at the wellhead, although still composed primarily of methane, is by no means as pure.

Raw natural gas comes from three types of wells: oil wells, gas wells, and condensate wells. Natural gas that comes from oil wells is typically termed 'associated gas'. This gas can exist separate from oil in the formation free gas , or dissolved in the crude oil dissolved gas. Natural gas from gas and condensate wells, in which there is little or no crude oil, is termed 'nonassociated gas'. Gas wells typically produce raw natural gas by itself, while condensate wells produce free natural gas along with a semi- liquid hydrocarbon condensate. Whatever the source of the natural gas, once separated from crude oil if present it commonly exists in mixtures with other hydrocarbons; principally ethane, propane, butane, and pentanes.

In addition, raw natural gas contains water vapor, hydrogen sulfide H2S , carbon dioxide, helium, nitrogen, and other compounds. Natural gas processing consists of separating all of the various hydrocarbons and fluids even solids from the pure natural gas, to produce what is known as 'pipeline quality' dry natural gas. Major transportation pipelines usually impose restrictions on the make- up of the natural gas that is allowed into the pipeline.

That means that before the natural gas can be transported it must be purified. While the ethane, propane, butane, and pentanes must be removed from natural gas, this does not mean that they are all 'waste products'. In fact, associated hydrocarbons, known as 'natural gas liquids' NGLs can be very valuable by-products of natural gas processing.

NGLs include ethane, propane, butane, iso-butane, and natural gasoline. These NGLs are sold separately and have a variety of different uses; including enhancing oil recovery in oil wells, providing raw materials for oil refineries or petrochemical plants, and as sources of energy. The actual practice of processing natural gas to pipeline dry gas quality levels can be quite complex, but usually involves four main processes to remove the various impurities:. Natural Gas Composition Natural gas is defined as gas obtained from a natural underground reservoir. It generally contains a large quantity of methane along with heavier hydrocarbons such as ethane, propane, isobutene, normal butane, etc..

Also in the raw state it often contains a considerable amount of non-hydrocarbons, such as nitrogen, hydrogen sulphide and carbon diooxode. There are some traces of such compounds as helium, carbonyl sulohide and various n-rcaptans. It is also generally saturated with water.

Table 2. The different aforementioned processes are not the only process used to produce dry natural gas or natural gas with available exporting properties. The next points details the most famous processing and treatment operation on the natural gas. The actual process used to separate oil from natural gas, as well as the equipment that is used, can vary widely. Although dry pipeline quality natural gas is virtually identical across different geographic areas, raw natural gas from different regions may have different compositions and separation requirements. In many instances, natural gas is dissolved in oil underground primarily due to the pressure that the formation is under.

When this natural gas and oil is produced, it is possible that it will separate on its own, simply due to decreased pressure; much like opening a can of soda pop allows the release of dissolved carbon dioxide.

  1. SISTEMA DE BIBLIOTECAS EPN - catalog › Details for: Fundamentals of natural gas processing /;
  2. Fundamentals of natural gas processing / Arthur J. Kidnay and William Parrish - Details - Trove!
  3. Wonderfully Made (Everyday Zoo);

In these cases, separation of oil and gas is relatively easy, and the two hydrocarbons are sent separate ways for further processing. The most basic type of separator is known as a conventional separator. It consists of a simple closed tank, where the force of gravity serves to separate the heavier liquids like oil, and the lighter gases, like natural gas. In certain instances, however, specialized equipment is necessary to separate oil and natural gas.

Customer reviews

This is most often used for wells producing high pressure gas along with light crude oil or condensate. These separators use pressure differentials to cool the wet natural gas and separate the oil and condensate. Wet gas enters the separator, being cooled slightly by a heat exchanger.

  1. Major Cults and False World Religions.
  2. Loco Motiv - C Instruments?
  3. Chap2 - Fundamentals and Principles of Natural Gas Processing;
  4. Fundamentals of Natural Gas Processing | Taylor & Francis Group!
  5. Prelude.
  6. The Tipsy Snowman.
  7. Armchair Hockey;

The gas then travels through a high pressure liquid 'knockout', which serves to remove any liquids into a low-temperature separator. The gas then flows into this low-temperature separator through a choke mechanism, which expands the gas as it enters the separator. This rapid expansion of the gas allows for the lowering of the temperature in the separator. After liquid removal, the dry gas then travels back through the heat exchanger and is warmed by the incoming wet gas. By varying the pressure of the gas in various sections of the separator, it is possible to vary the temperature, which causes the oil and some water to be condensed out of the wet gas stream.

This basic pressure-temperature relationship can work in reverse as well, to extract gas from a liquid oil stream. In addition to separating oil and some condensate from the wet gas stream, it is necessary to remove most of the associated water. Most of the liquid, free water associated with extracted natural gas is removed by simple separation methods at or near the wellhead. However, the removal of the water vapor that exists in solution in natural gas requires a more complex treatment. This treatment consists of 'dehydrating' the natural gas, which usually involves one of two processes: either absorption, or adsorption.

Absorption occurs when the water vapor is taken out by a dehydrating agent. Adsorption occurs when the water vapor is condensed and collected on the surface. An example of absorption dehydration is known as Glycol Dehydration. In this process, a liquid desiccant dehydrator serves to absorb water vapor from the gas stream. Glycol, the principal agent in this process, has a chemical affinity for water. This means that, when in contact with a stream of natural gas that contains water, glycol will serve to 'steal' the water out of the gas stream.

Essentially, glycol dehydration involves using a glycol solution, usually either diethylene glycol DEG or triethylene glycol TEG , which is brought into contact with the wet gas stream in what is called the 'contactor'. The glycol solution will absorb water from the wet gas. Once absorbed, the glycol particles become heavier and sink to the bottom of the contactor where they are removed.

The natural gas, having been stripped of most of its water content, is then transported out of the dehydrator. The glycol solution, bearing all of the water stripped from the natural gas, is put through a specialized boiler designed to vaporize only the water out of the solution.

While water has a boiling point of degrees Fahrenheit oC , glycol does not boil until degrees Fahrenheit oC. This boiling point differential makes it relatively easy to remove water from the glycol solution, allowing it be reused in the dehydration process. A new innovation in this process has been the addition of flash tank separator- condensers.

As well as absorbing water from the wet gas stream, the glycol solution occasionally carries with it small amounts of methane and other compounds found in the wet gas.

Fundamentals of Natural Gas Processing, Second Edition

In the past, this methane was simply vented out of the boiler. In addition to.

Fundamentals of Natural Gas: An International Perspective, 2nd Ed.

In order to decrease the amount of methane and other compounds that are lost, flash tank separator-condensers work to remove these compounds before the glycol solution reaches the boiler. Essentially, a flash tank separator consists of a device that reduces the pressure of the glycol solution stream, allowing the methane and other hydrocarbons to vaporize 'flash'. The glycol solution then travels to the boiler, which may also be fitted with air or water cooled condensers, which serve to capture any remaining organic compounds that may remain in the glycol solution.

In practice, according to the Department of Energy's Office of Fossil Energy, these systems have been shown to recover 90 to 99 percent of methane that would otherwise be flared into the atmosphere. Solid-desiccant dehydration is the primary form of dehydrating natural gas using adsorption, and usually consists of two or more adsorption towers, which are filled with a solid desiccant.

Typical desiccants include activated alumina or a granular silica gel material. Wet natural gas is passed through these towers, from top to bottom. As the wet gas passes around the particles of desiccant material, water is retained on the surface of these desiccant particles. Passing through the entire desiccant bed, almost all of the water is adsorbed onto the desiccant material, leaving the dry gas to exit the bottom of the tower.

Solid-desiccant dehydrators are typically more effective than glycol dehydrators, and are usually installed as a type of straddle system along natural gas pipelines. These types of dehydration systems are best suited for large volumes of gas under very high pressure, and are thus usually located on a pipeline downstream of a compressor station.

Two or more towers are required due to the fact that after a certain period of use, the desiccant in a particular tower becomes saturated with water. To 'regenerate' the desiccant, a high- temperature heater is used to heat gas to a very high temperature.


Passing this heated gas. Natural gas coming directly from a well contains many natural gas liquids that are commonly removed. In most instances, natural gas liquids NGLs have a higher value as separate products, and it is thus economical to remove them from the gas stream. The removal of natural gas liquids usually takes place in a relatively centralized processing plant, and uses techniques similar to those used to dehydrate natural gas.

There are two basic steps to the treatment of natural gas liquids in the natural gas stream. First, the liquids must be extracted from the natural gas.

Reviews (0)

Second, these natural gas liquids must be separated themselves, down to their base components. There are two principle techniques for removing NGLs from the natural gas stream: the absorption method and the cryogenic expander process. According to the Gas Processors Association, these two processes account for around 90 percent of total natural gas liquids production.

The absorption method of NGL extraction is very similar to using absorption for dehydration. The main difference is that, in NGL absorption, an absorbing oil is used as opposed to glycol.

Bio Daniel McCartney, Author, Fundamentals of Natural Gas Processing 2ED

This absorbing oil has an 'affinity' for NGLs in much the same manner as glycol has an affinity for water. Before the oil has picked up any NGLs, it is termed 'lean' absorption oil. As the natural gas is passed through an absorption tower, it is brought into contact with the absorption oil which soaks up a high proportion of the NGLs. The 'rich' absorption oil, now containing NGLs, exits the absorption tower through the bottom.

It is now a mixture of absorption oil, propane, butanes, pentanes, and other heavier hydrocarbons. The rich oil is fed into lean oil stills, where the mixture is heated to a temperature above the boiling point of the NGLs, but below that of the oil. This process allows for the recovery of around 75 percent of butanes, and 85 - 90 percent of pentanes and heavier molecules from the natural gas stream.

The basic absorption process above can be modified to improve its effectiveness, or to target the extraction of specific NGLs. In the refrigerated oil absorption method, where the lean oil is cooled through refrigeration, propane recovery can be upwards of 90 percent, and around 40 percent of ethane can be extracted from the natural gas stream.

Extraction of the other, heavier NGLs can be close to percent using this process. Cryogenic processes are also used to extract NGLs from natural gas. While absorption methods can extract almost all of the heavier NGLs, the lighter hydrocarbons, such as ethane, are often more difficult to recover from the natural gas stream. In certain instances, it is economic to simply leave the lighter NGLs in the natural gas stream. However, if it is economic to extract ethane and other lighter hydrocarbons, cryogenic processes are required for high recovery rates.

Essentially, cryogenic processes consist of dropping the temperature of the gas stream to around degrees Fahrenheit. There are a number of different ways of chilling the gas to these temperatures, but one of the most effective is known as the turbo expander process. In this process, external refrigerants are used to cool the natural gas stream. Then, an expansion turbine is used to rapidly expand the chilled gases, which causes the temperature to drop significantly. This rapid temperature drop condenses ethane and other hydrocarbons in the gas stream, while maintaining methane in gaseous form.

This process allows for the recovery of about 90 to 95 percent of the ethane originally in the gas stream. In addition, the expansion turbine is able to convert some of the energy released when the natural gas stream is expanded into recompressing the gaseous methane effluent, thus saving energy costs associated with extracting ethane. The extraction of NGLs from the natural gas stream produces both cleaner, purer natural gas, as well as the valuable hydrocarbons that are the NGLs themselves.

Once NGLs have been removed from the natural gas stream, they must be broken down into their base components to be useful. That is, the mixed stream of different NGLs must be separated out. The process used to accomplish this task is called fractionation. Fractionation works based on the different boiling points of the different hydrocarbons in the NGL stream.

Essentially, fractionation occurs in stages consisting of the boiling off of hydrocarbons one by one. The name of a particular fractionator gives an idea as to its purpose, as it is conventionally named for the hydrocarbon that is boiled off. The entire fractionation process is broken down into steps, starting with the removal of the lighter NGLs from the stream. The particular fractionators are used in the following order:. By proceeding from the lightest hydrocarbons to the heaviest, it is possible to separate the different NGLs reasonably easily.

In addition to water, oil, and NGL removal, one of the most important parts of gas processing involves the removal of sulfur and carbon dioxide. Natural gas from some wells contains significant amounts of sulfur and carbon dioxide. This natural gas, because of the rotten smell provided by its sulfur content, is commonly called 'sour gas'.